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Abstract

Integration of inputs by cortical neurons provides the basis for the complex information

processing performed in the cerebral cortex. Here, we propose a new analytic framework

for understanding integration within cortical neuronal receptive �elds. Based on the synap-

tic organization of cortex [1, 2, 3, 4, 5, 6], we argue that neuronal integration is better

understood in terms of local cortical circuitry than at the level of single neurons, and

we present a method for constructing self-contained modules which capture (nonlinear)

local circuit interactions. In this framework, receptive �eld elements naturally have dual

(rather than the traditional unitary [7, 8, 9, 10, 11]) inuence since they drive both ex-

citatory and inhibitory cortical neurons. This vector-based analysis, in contrast to scalar

approaches, greatly simpli�es integration by permitting linear summation of inputs from

both \classical" and \extraclassical" receptive �eld regions. We illustrate this by explain-

ing two complex visual cortical phenomena, which are incompatible with scalar notions of

neuronal integration.
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Central to an understanding of cortical func-

tion is the question of how cortical neurons in-

tegrate inputs to produce outputs. In sensory

cortex, the unit of integration is a neuron's re-

ceptive �eld (RF)[7, 9]. Experiments in primary

visual cortex (V1) demonstrate that the spatial

extent of integration includes not only \classi-

cal" regions, where visual stimuli elicit responses

(presumably through thalamocortical axons),

but also \extraclassical" regions, where stim-

uli largely modulate responses evoked by other

stimuli (presumably via long-range intracortical

or inter-areal axons)[5, 12, 13, 14, 15]. The tra-

ditional view of integration holds that each por-

tion of a neuron's receptive �eld in response to

a given stimulus element has either an excita-

tory or an inhibitory (i.e., a scalar) inuence[7,

8, 9, 10, 11] (see �g 1a). Although this approach

has substantial explanatory power, it cannot ac-

count for phenomena in which the net e�ect of

a stimulus element in a given portion of the re-

ceptive �eld appears to switch between excita-

tory and inhibitory as global stimulus conditions

change [16, 17, 18, 19, 20]. Two such phenom-

ena, involving local and long-range integration

respectively, are paradigmatic. First, increas-

ing the luminance contrast of an oriented visual

stimulus causes responses in primary visual cor-

tex to initially increase, but subsequently sat-

urate and even decrease (\supersaturate")[16,

22, 23, 24] (see �g 2a). Second, adding a distal

stimulus facilitates responses to a weak central

stimulus, but suppresses responses to a strong

stimulus[17, 18, 19, 20] (see �g 2b).

Our goal is to develop an expanded notion

of the visual cortical receptive �eld which can

explain stimulus-dependent responses such as

these. Three basic features of cortical anatomy,

which are overlooked by the traditional recep-

tive �eld view, are central to the expanded view

(see �g 1b): i) receptive �eld regions (via ei-

ther thalamocortical or long-range intracortical

axons) drive both excitatory and inhibitory cor-

tical neurons [1, 2, 6]; ii) these neurons form

dense, recurrent local connections [1, 3, 4, 5];

and iii) di�erent portions of the receptive �eld

provide converging inputs to a shared popula-

tion of cortical neurons[5, 13, 14, 15, 21]. Based

on this anatomy, we propose that: i) each RF

region in response to a given stimulus has both

excitatory and inhibitory inuences on neuronal

responses which in general cannot be reduced

to a scalar quantity but rather should be con-

sidered separately (i.e., RF input is a vector);

ii) receptive �eld inputs are integrated by the

local cortical circuitry; and iii) the net e�ect

of a receptive �eld input depends both on the

excitatory-inhibitory bias of the a�erent inputs

and on how other receptive �eld regions activate

the local cortical circuitry.

First we will demonstrate this approach by

capturing the paradoxical local and long-range

phenomena within a large-scale visual cortical

model, and later we will present an analytic

explanation. In contrast, prior computational

investigations of local circuit inuences either

have captured anatomical details only in simu-

lations with little formal analysis [25, 26, 27] or

have oversimpli�ed local cortical excitatory and

inhibitory interactions in order to obtain closed-

form (scalar) analysis[28, 29, 30]. Recently, we

and others [25, 26, 31] have demonstrated that

consideration of short-range recurrent cortical

excitatory (and inhibitory) connections yields a

concise account of a broad range of experimen-

tal data on orientation and direction selectivity.

Here, we extend our model to incorporate long-

range intracortical excitation (see �g 3 and [25]

for model description).

Physiological responses to oriented grating

stimuli of di�ering contrasts within the classical

RF are captured by the model (see �g 4a). The

responses shown here and below are for the ex-

citatory subpopulation. Responses saturate at

contrast levels below which thalamic responses

saturate [22], can decline for high contrasts (su-

persaturation) [16, 22, 23, 24], and have �ring

rates well below maximal cellular �ring rates

[32]. Inhibitory neurons, on average, saturate

at higher contrasts than do excitatory neurons

(not shown). While preserving classical RF

properties, our model also captures paradoxical
1
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(a) The traditional view of �xed receptive �eld regions [7, 8, 9, 10, 11] implies an oversimpli�ed

view of cortical circuitry. For a given stimulus element, each portion of the RF is assumed to have

either an excitatory or inhibitory inuence. This view considers only feedforward cortical circuitry:

a�erent projections corresponding to excitatory RF regions (+) provide direct excitatory input to

the neuron, while a�erent projections from inhibitory sub�elds (�) excite local interneurons which

inhibit the neuron. This receptive �eld concept provides a simple explanation of isolated stimulus

e�ects but it neglects (local feedback) interactions among excitatory and inhibitory neurons and is

ill-suited to address complex RF integration.

(b) Consideration of cortical circuitry suggests a receptive �eld concept that is more di�cult to

analyze but better suited to address RF integration. A�erent projections (including thalamocortical

and long-range intracortical connections) from a RF region contact both excitatory and inhibitory

neurons [1, 2, 6] and thus have dual inuences (+=�). Because local cortical neurons densely

interconnect [1, 3, 4, 5], RF regions not only directly drive a cortical neuron but also have substantial

indirect inuence via a shared pool of local excitatory and inhibitory neurons. Thus, the net e�ect

of a stimulus element in a given portion of the RF depends both on the excitatory-inhibitory

bias of its a�erent projections and on how other RF segments activate the local cortical circuitry.

Figure 1: Receptive Field Concepts and Cortical Circuitry.
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(a) Experimental evidence for \supersaturation." Data obtained by single unit recording of neu-

rons in cat V1 (see �g. 2c of [16]) are replotted to show declining responses at high contrast levels.

Mean values (with std. err.) of contrast-response curves of 29 cortical cells (12 complex, 17 simple).

Response curves for each cell were normalized to its strongest response, which was de�ned as 100%.

The abscissa shows the luminance increment of a moving bar relative to background (3cd=m2).

(b) Experimental evidence for surround facilitation/suppression. Data from single unit record-

ing of cat V1 cells (kindly provided by F. Sengpiel [20]) shows that the presence of a high

contrast surround stimulus can facilitate responses to a low contrast center stimulus, yet sup-

press responses to a high contrast center stimulus. Mean responses (N=10 cells; with std. err.)

obtained for varying contrast levels of an (optimally-sized and optimally oriented) center grat-

ing, with no surround (solid line) and with a high contrast, iso-orientation surround (dashed

line). Response curves for each cell were normalized for its strongest response to \center

only" stimulation. Points at 0% and 100% contrast (open symbols; center only = 2) replot

data from monkey V1 (�g. 10 of [17]) showing same e�ect using both iso-orientation ()

and cross-orientation (4) surround stimuli (bar stimuli were used in the latter experiments).

Figure 2: Experimental Evidence.
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Cortical circuitry under a 2.5mm by 5mm patch of primary visual cortex is represented by a model

with 20,250 spiking cortical neurons and over 1.3 million cortical synapses. Neurons are organized

into a 45 by 90 grid of \mini-columns", based on an orientation map obtained by optical recording

of intrinsic signals of cat visual cortex (data from [45]). Each mini-column contains 4 excitatory and

1 inhibitory neurons modeled separately as \integrate-and-�re" neurons with realistic currents and

experimentally-derived intracellular parameters [32] (see methods of [25] for equations and param-

eters). Color map represents orientation preference (shown on the scale at bottom), while surface

amplitude represents the net ( � excitatory - � inhibitory ) strength of intracortical connections from

each mini-column to the cells of the central (yellow) orientation mini-column. In the �gure, long-

range connections are scaled upward by a factor of 10 relative to short-range connections in order to

aid visibility. Intracortical connections provide short-range excitation (connection probabilities fall

linearly from �excit�excit = 0:1, �excit�inhib = 0:1 at distance zero to � = 0 at d = 150�m), short-range

inhibition (linear from �inhib�excit = 0:12, �inhib�inhib = 0:06 at d = 0 to � = 0:5�peak at d = 500�m;

� = 0 elsewhere), and long-range excitation (linear with orientation di�erence, from � = 0:005 at

� = 0� to � = 0:001 at � = 90�). Peak synaptic conductances, by source, onto excitatory cells are

gexcit = 7nS, ginhib = 15nS, glgn = 3nS, and glong = 1:2nS and onto inhibitory cells are gexcit = 1:5nS,

ginhib = 1:5nS, glgn = 1:5nS, and glong = 1:2nS. Cortical magni�cation is 1 mm/deg, cortical RF di-

ameters are roughly 0:75�, and thalamocortical spikes are modeled as Poisson processes. Each thala-

mic neuron projects to cortical neurons over an area 0:6mm2 and responds linearly with log stimulus

contrast. Results are averaged over 20 networks constructed with these probability distributions.

Figure 3: Visual Cortical Model
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(a) Mean cortical contrast responses of central (yellow) orientation domain (36 excitatory neurons

� 20 networks). Circular grating stimuli (diameter 0:75�) were presented for 300 msecs. Responses

saturate as contrast increases (solid line). This property of cortical neurons has long been known

[16, 22, 23, 24] (see �g. 2a) and likely results from cortical interactions since cortical saturation

generally occurs at lower contrasts than for LGN cells and because saturation response levels are

much lower than the responses of cortical neurons in vitro to strong injected currents [32]. When

intracortical connections are silenced in simulations (leaving only thalamocortical inputs active)

responses of the same neurons increase linearly without saturation (dotted line). Note switch from

cortical ampli�cation to attenuation as contrast increases. For a subpopulation of model neurons

(N = 18 � 20), responses decline at high contrasts (dashed line). Such \supersaturation" has

been described for V1 neurons [22, 23, 16, 24]; the decline in response beyond a maximal level

implies that cortical contrast e�ects are more complex than simply saturation or normalization

[29]. These saturation properties were also obtained for non-preferred stimulus orientations, both

experimentally [42] and in the model (not shown).

(b) Simulation of \surround" stimulus e�ects. Annular \surround" grating stimuli (100% con-

trast; inner diameter 0:75�) facilitate responses to low contrast \center" stimuli, but suppress

responses to high contrast \center" stimuli. Recent experiments [20] (see �g. 2b) have demon-

strated that contrast-response functions for \surround" and \no surround" stimuli cross at a mod-

erate contrast level with \surround" responses relatively stronger for low contrast centers and \no

surround" responses dominating for high contrast center stimuli. Other researchers [17, 18, 19]

have also observed that an oriented surround stimulus can facilitate responses to an empty cen-

ter, yet suppress responses to a high-contrast, optimal orientation center stimulus. Both e�ects

are strongest for iso-orientation surround stimuli [17, 18]. In addition, Sillito et al. [18] have re-

ported that (high contrast) non-optimal orientation center stimuli, which fail to elicit responses

alone, can produce vigorous responses when a surround stimulus of the preferred orientation

(for the center �eld) is also presented. All such e�ects were observed in our simulations (non-

preferred center results not shown), and these simulation results are closely approximated by the

responses of a self-contained module (dashed lines) to the same long-range input (see also �g 6).

Figure 4: Simulations
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extraclassical RF modulations [17, 18, 19, 20].

The modulatory inuence of \surround" grat-

ings on responses to optimal orientation \cen-

ter" stimuli shifts from facilitatory to suppres-

sive as center stimulus contrast increases (see

�g 4b). These e�ects emerge from the local in-

tracortical interactions (as will be shown below)

and do not require synaptic plasticity or com-

plex cellular properties. Our model is the �rst

to provide a uni�ed account of these classical

and extraclassical RF phenomena.

We understand the integration of classical

and extraclassical RF inuences by analyzing

local circuitry as a unit. Neuronal responses

in the model depend not only on thalamocor-

tical and long-range intracortical inputs [5, 13]

(which are directly related to classical and ex-

traclassical stimulation [14], respectively), but

also on recurrent local inputs. We simplify

analysis by isolating nonlinear local interactions

within a closed system (module) which receives

only long-distance (thalamocortical and long-

range intracortical) inputs and generates ap-

proximately the same mean responses as a lo-

cal neuronal population embedded in the model.

This task is non-trivial, because intracortical

connections form a continuum. Simply isolating

a small group of cells (together with the connec-

tions among them) will remove many local con-

nections from across the group boundary, and

thus lead to inaccurate responses. The module

we construct preserves the distribution of cel-

lular properties and interactions within the lo-

cal population, and compensates for the missing

local connections by making extra connections

within the isolated group (see �g 5 for a formal

explanation). This module will produce correct

responses whenever mean �ring rates are locally

homogeneous. Note that the method can easily

incorporate multiple distinct neuronal subpopu-

lations (e.g. cell types and/or layers), and multi-

ple sources of long-distance input (e.g. feedback

projections). This technique di�ers from \mean-

�eld" approximations (e.g., [31]) in that analysis

is local and does not require oversimpli�cation

of cellular and network properties.

We construct a module consisting of two inter-

acting homogeneous populations, excitatory and

inhibitory neurons (see �g 5). A�erent inputs

to the module excite both neuronal populations

and thus must be treated as two-dimensional

vectors; this contrasts with standard single neu-

ron RF analyses in which inputs are scalars

[7, 8, 9, 10, 11, 29, 30, 33]. Thalamocortical and

long-range intracortical inputs activate excita-

tory and inhibitory neurons in di�erent propor-

tions and thus the corresponding input vectors

have di�erent angles; vector magnitudes vary di-

rectly with stimulus strength. Module responses

are a function of the summed input vectors, and

mean �ring rates of the module's excitatory neu-

rons are completely characterized by the surface

plotted in �gure 6. Increasing the contrast of the

classical RF stimulus (in the absence of extra-

classical stimulation) scales inputs to both cell

populations, de�ning a straight line in the input

plane. Presentation of a �xed surround stimu-

lus activates long-range intracortical inputs; the

e�ect of these inputs can be understood as a sim-

ple translation of the contrast input line via vec-

tor addition (surround stimulus e�ects mediated

by feedback projections from area V2 [34] can be

treated similarly). Contrast response functions

(CRFs) predicted by the module are obtained

by projecting the resulting input line onto the

surface, and they closely approximate the CRFs

generated by the model for all tested stimulus

conditions (see �g 4b) as well as experimental

CRFs (see �g 2a,b). Thus, the paradoxical clas-

sical and extraclassical RF integration phenom-

ena are captured by local circuit interactions.

Local interactions are described by module re-

sponse surface shapes. The surface shape shown

in �gure 6 is characteristic of a large class of

recurrently connected excitatory-inhibitory cir-

cuits and can be thought of as providing gen-

eralized gain control: sigmoid-shaped response

curves are generated for a wide-range of stimu-

lus conditions. Analytical conditions for extra-

classical facilitation/suppression e�ects are de-

rived in �gure 7 and correspond to the physi-

ological prediction that long-range intracortical
6
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Given a local neuronal population P whose mean �ring rate M = F(Id; Il) is a function F of

the long-distance (intracortical and thalamocortical) inputs Id and local (intracortical) inputs Il,

we want to construct a closed system (module) whose response approximates M as a function

of Id only. All bold face quantities denote vectors with components corresponding to excitatory

(triangles) and inhibitory (circles) cells; local inputs are de�ned as arriving from within a ra-

dius R, which is chosen to minimize approximation error. Module construction is only possible

if Il can be expressed as a function of M and Id. To that end we use a local homogeneity as-

sumption M = Il, i.e. neurons within R (not just P ) have mean �ring rates M. Thus the

module output M� is the solution of M = F(Id;M). This equation can be solved numerically

if we model the response functions of integrate-and-�re neurons [43, 44]. Here, we compute M�

by simulating a module composed of excitatory and inhibitory neurons, in which neurons receive

the same average number and strength of synapses as neurons in P receive from within the ra-

dius R. The homogeneity assumption is equivalent to isolating P and compensating for the \cut"

connections from R by adding extra connections within P . Inhibition is treated as purely lo-

cal (long-distance inhibition can be addressed by doubling the dimensions). The radius R that

minimizes approximation error is a balance between two conicting constraints: homogeneity of

local �ring, which favors smaller R, and inclusion of cortical inhibition, which favors bigger R.

Figure 5: Constructing self-contained modules from large-scale models.
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Excitatory responses of a module (avg. 10 trials; 500 msecs) constructed for the center of the

cortical model are shown by the green surface. Axes represent total excitatory input to the two

module populations, in units of average synaptic conductance. Total long-distance input converging

on the center of the full model is plotted in the input plane for all stimulus conditions (red - center

only; cyan - orthogonal surround; blue - iso-orientation surround). Module response curves are

obtained by surface projection (see �g 4b for comparison with model results). Surround stimula-

tion provides a vector input that translates (see dashed brown line in input plane) the thalamic

input line (which represents the set of vectors for all center contrasts). Orthogonal surround stim-

ulation activates fewer neurons that send long-distance projections to the central population and

thus results in a smaller translation than iso-orientation surround stimulation. Note that other

center and/or surround stimuli would produce di�erent input vectors and thus would generate dif-

fering degrees of facilitation and suppression for the same module (see experiments of [17, 18, 20]).

Figure 6: Module response surface
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Analysis of the requirements for saturation and facilitation/suppression e�ects. Note that integrate-

and-�re neurons have approximately threshold-linear feedforward responses (�g 4a), and thus the

module output (�g 6) is a smoothed version of an underlying piecewise-linear surface. This under-

lying surface can be obtained from a simpli�ed module, composed of interconnected threshold-

linear neurons - a typical example is shown in here. Assume excitatory and inhibitory neu-

rons have thresholds �ex; �in, and gains Kex; Kin; total a�erent inputs to the two populations

are Iex = MtTex + MhHex; Iin = MtTin + MhHin, where Mt; Ht are thalamic and long-range

horizontal inputs, and Tex; Tin; Hex; Hin are the corresponding synaptic e�cacies. The synap-

tic weights among excitatory (e) and inhibitory (i) cells in the module are Wee;Wei;Wie;Wii.

Then the mean �ring rates in the module satisfy the following piecewise-linear system of equa-

tions: Mex = Kex(Iex + WeeMex � WieMin � �ex); Min = Kin(Iin + WeiMex � WiiMin � �in).

The response surface in the �gure is Mex(Iex; Iin), as obtained from the above system. The

surface has three planar regions, corresponding to (A) no excitatory �ring, (B) recurrent self-

excitation with no inhibition, and (C) balanced (competing) excitatory and inhibitory �ring.

Response saturation occurs when the contrast input line crosses region (B) and is parallel to

the contours in region (C), i.e. �in=�ex > Tin=Tex = (Wii + 1=Kin)=Wie (shown with red

curve). Supersaturation results from increasing the slope of the contrast input line, so that

Tin=Tex > (Wii + 1=Kin)=Wie. The surround facilitation/suppression e�ect (compare blue curve

to red curve) is obtained when the translation vector resulting from surround stimulation has

a bigger slope than the contrast input line, i.e. Hin=Hex > Tin=Tex. Although this simpli�ed

module neglects driving force nonlinearities and response smoothing around threshold (see �g 4a,

feedforward), its parameters can be extracted from the parameters of the large-scale model to pro-

vide a quantitative characterization of geometrical properties of the real response surface in �g

6. Note that analysis region B requires only relatively low inhibitory �ring, not a lack of �ring;

this is made apparent if a piecewise-linear, rather than simply a threshold-linear model, is used.

Figure 7: Analysis
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inputs are less biased towards excitatory (vs. in-

hibitory) neurons than are thalamocortical in-

puts. The response surface can be thought of

as the collection of all possible contrast-response

curves, and the contextual inuence of surround

stimulation then can be seen as \selecting" a

new response curve. By comparison, scalar

addition of thalamocortical and long-range in-

puts predicts surround e�ects along the same

response curve, in which case contrast satu-

ration (no decline) and long-range suppression

are incompatible. Extracellular observations

[16, 24, 20, 35] of stimulus dependent shifts in

contrast response functions (CRFs) which pri-

marily shift the CRF downward (lower peak re-

sponse) or to the right along the contrast axis

(same peak response) have previously been in-

terpreted in terms of divisive inhibition [29, 30].

Intracellular evidence, however, indicates that

divisive or shunting inhibition plays little role in

visual cortex [36, 37]. Our module surface (�g

6) illustrates how both e�ects can occur without

divisive inhibition: i) additional drive to cor-

tical inhibitory neurons will shift the contrast

input line and yield a largely downward shift of

the CRF; ii) inhibition of thalamic responses (or

thalamocortical transmission) changes only the

magnitude but not the angle of the input vector

and thus the CRF will shift rightward.

Modularity has long been proposed as a

means of resolving the complexity of cortical

function [38, 39, 40]. Here we have constructed

modules (corresponding to dense local cortical

circuitry) which are quasi-autonomous: their re-

sponse properties, as studied in isolation, are

preserved in the larger system. Our modular

analysis illustrates an expanded concept of the

cortical receptive �eld: each portion of the RF

has a dual excitatory-inhibitory inuence whose

net e�ect on a neuron depends on how other

RF components activate the recurrent local cor-

tical circuitry. This vector-based RF integra-

tion fully encompasses the traditional (scalar)

view as a special case. Furthermore, this ap-

proach uni�es notions of classical and extraclas-

sical RFs by showing how long-range inputs can

be considered on equal footing with thalamo-

cortical inputs and how the e�ects of both can

be analyzed together. Based on this analysis

we predict that for di�erent types of stimula-

tion (involving, for example, luminance, orien-

tation, or motion contrast), the inuence of ex-

traclassical stimulation shifts from facilitatory

to suppressive as center RF drive increases; re-

cent evidence from monkey V1 showing mod-

ulation of neuronal responses as a function of

the orientation di�erence between center & sur-

round stimuli [18] are strongly consistent with

our prediction. Since the properties of neurons

and connections in visual cortex exploited here

are common to other cortical areas, vector-based

integration appears well-suited to other cortex

as well.
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